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Within the limits of the model of local interaction of a body and a medium, the special features of the design of optimum three- 
dimensional bodies are investigated taking friction into account. It is assumed that the pressure on the body surface is described 
by a two-term formula which is quadratic in the velocity and has constant terms representing the strength of the medium. Three 
models of the friction are used to represent the shear stresses: constant friction, friction proportional to the pressure, and mixed 
friction. A comparative analysis is carried out of solutions of problems of optimizing the body shape with respect to drag and 
with respect to penetration depth, obtained in the class of three-dimensional configurations for the different models of the friction. 
It is shown that, if the base area of the body is given, the optimum shapes for all the friction models are those in which the normal 
at each point makes a constant optimum angle with the direction of motion. This angle is independent of the base area and is 
determined by the velocity of motion and the parameters of the model, which depend on the characteristics of the medium. The 
influence of the parameters of the model on the optimum shapes is demonstrated and, for each model, formulae are derived 
relating the velocity of motion and the characteristics of the medium with the optimum angle. �9 2005 Elsevier Ltd. All rights 
reserved. 

It is well known that when a body is moving in dense media, such as soil and metal, the friction forces 
exert a considerable influence on the characteristics of the motion of the body [1-5] and may even cause 
it to break [2]. The characteristics of the motion of the body may be improved and the risk of breakage 
reduced if one uses body shapes that, at the first stage, have the minimum drag or guarantee the 
maximum penetration depth at a certain initial velocity of motion. 

The search for the optimum shapes must be carried out taking friction into account. However, owing 
to the great variety of properties of media, which often depend on the velocity and loading conditions, 
it is difficult to give exact quantitative estimates of the influence of friction, and approximate models 
are therefore constructed to allow for this [1-5]. Local interaction models,in which it is assumed that 
each element of the body surface interacts with the medium independently of other parts of the body, 
have been widely used to describe the forces acting on the surface of a body moving at high velocity in 
media. Thus, when investigating the motion of a body in dense media, one most often uses a two-term 
local interaction model [4-11], in which the pressure on the body surface is described by a formula that 
is quadratic in the velocity and has constant terms characterizing the strength of the medium; shear 
stresses are represented using one of two models: constant friction or Coulomb friction. In the constant 
friction model it is assumed that the shear stresses are equal to their maximum value and constant over 
the whole body surface. Such a model is frequently used to describe shear stresses on the surface of a 
body moving at high velocities in media of low or medium strength, such as gases or soils [4, 5]. The 
Coulomb friction model, in which the shear stresses are assumed to be proportional to the pressure, 
is most often used to describe the forces acting on a body moving in highly resistant media, such as 
concrete and metal [3, 7, 10, 11]. 

The use of a two-term local interaction model with constant, velocity-independent parameters enables 
the drag and penetration depth of the body to be represented as a functional [4, 7-14] that depends 
explicitly on the body shape. This enables the search for optimum shapes using the methods of the 
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calculus of variations, and it has been proved [8, 12-14] that, in the class of three-dimensional (3D) 
shapes with a given base area of the body, minimum drag and maximum penetration depth are achieved 
by bodies with the property that the normal to their surface at each point makes a constant optimum 
angle with the motion direction. This angle is independent of the base area of the body and is determined 
by the characteristics of the medium and the velocity of the body motion in terms of the constants 
occurring in the drag law. In the general case, the optimum angles for bodies of minimum drag and 
bodies with maximum penetration depth are different, but the technique for constructing these bodies 
is the same [12-14]. 

Friction influences the shape of the optimum bodies, and it has been shown [13, 14] that, without 
allowing for friction in the two-term local interaction model, the optimum 3D bodies are constructed 
from pieces of surfaces whose normals are perpendicular to the direction of motion. For a given non- 
zero base area, the optimum shapes in that case will be those with infinite lateral surface area. Such 
shapes are of no practical use, and therefore, the solution of problems of the optimization of bodies 
must allow for friction, but the choice of friction model must be justified specifically as it applies to a 
specific medium. 

A generalization of the models just considered to the case of a body moving in dense media is the 
mixed friction model proposed for soils in [1]. In that model the shear stresses are calculated by 
Coulomb's friction law if they do not exceed the yield point of the material of the medium in shear, 
and equal to the yield point otherwise. As a result, in any body shape, there may be parts of the surface 
on which shear stresses are evaluated using different friction laws. 

The problem of a body of minimum drag using a mixed friction model in the two-term local interaction 
model has been solved for solids of revolution [9]. In the class of 3D shapes, the special features of the 
solution of this problem have not been analysed. The problem of a body with maximum penetration 
depth has never been considered in the case of a mixed friction model. 

Remark. After this paper had gone to print, K. A. Koneva and N. A. Ostapenko published a paper 
entitled "Three-dimensional bodies of least drag moving in dense media under conditions of a mixed 
friction model" (VestnikMoslc Univ., Ser. 1, Maternatika, Mekhanika, 2004, 6, 34-39). In that paper, using 
the approach of [12-14], the solution of the problem of a body of minimum drag in the mixed-friction 
model is analysed. However, the results of the computations are given there for a medium referred to 
as "soil," but whose strength characteristics are lower by almost two orders of magnitude than those 
of soils; consequently, the conclusions drawn in that paper on the basis of those computation cannot 
be used to investigate real dense media. 

Below, using a two-term local interaction model in the class of 3D configurations, a comparative 
analysis is carried out of solutions of the problems of a body of minimum drag and a body with maximum 
penetration depth, for three friction models: constant friction, Coulomb friction and mixed friction. 
The differences between these solutions are demonstrated and the influence of the model parameters 
on the optimum body shapes are investigated. 

1. THE MODEL OF THE B O D Y - M E D I U M  I N T E R A C T I O N  

The force that a medium exerts on a rigid non-deformable body moving in it may be written in the 
form 

s 

where cn and cz are the normal and shear stresses on the body surface, n and x are the unit vectors of 
the inward normal and the tangent to a surface element; the integration is performed over the surface 
S of contact of the body with the medium. 

We shall assume that each element of the surface S interacts with the medium independently of other 
parts of the body, and that the action of the forces on the surface may be described by a local interaction 
model [4-11]. To represent the stresses in the local interaction model, we will use two-term formulae 
containing dynamical and constant terms 

~ = A t U 2 ( u . u ) 2 + B l ,  t~ x = A 2 U 2 ( u . n ) 2 + B 2  (1.2) 

where U is the velocity of the body, u is the unit vector of the velocity, and the coefficients A i and B; 
(i = 1, 2) are the parameters of the model, determined by the characteristics of the medium. With certain 
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assumptions, the first expression of (1.2) describes the pressure on the surface of the body moving in 
a gas [4] and in dense media like soils and metals [5-10]. The term B1 in that case characterizes the 
resistance of the medium to deformation, and the coefficient A1 is of the order of magnitude of the 
density of the medium. For specific media, the values of A1 and B1 are determined either by solving 
model problems [5, 6] or by experiment [15, 16]. Thus, for clay media, according to the solution obtained 
for an incompressible elastoplastic medium [6], one can take 

A l = 390/2, B l = 4I,(1 + ln(g/'cs))/3 (1.3) 

where 9o is the density of the medium, g is the shear modulus and is "ts is the yield point of the material 
of the medium for shear; all these are constant and independent of the velocity. 

In the local interaction model, the vector "c is coplanar with u and n: 

x = [[u x n] x nl/l[u x n]l (1.4) 

The shear stresses o~ will be represented using three models: constant friction, Coulomb friction and 
a mixed friction model. The constant friction model is frequently chosen to represent o~ on the body 
surface when the body is moving at high velocity in media of low and average strength, such as gas and 
soils [4, 5], when it is assumed that the shear stresses have reached their maximum values and are equal 
to the yield point % which is constant over the entire body surface: ~ = ~s. Then 

a 2 = 0, B2 = "~s (1.5) 

The Coulomb model is most frequently used to describe the forces acting on the body when it is moving 
in strong media, such as concrete and metal [3, 7, 10, 11]. Within the framework of this model, shear 
stresses are assumed to be proportional to the pressure: ox = go~n, where go is the constant coefficient 
of friction, and in that case, 

A 2 = g0Al, B 2 = g0B1 (1.6) 

A generalization of these models to the case of a body moving in dense media is the mixed friction 
model, in which the shear stresses are evaluated by Coulomb's law of friction if they do not exceed x, 
and equal to x, otherwise: 

= t g 0 o  .,  if g ~ 1 7 6  (1.7) 
6~ Lx,, if g0 o.  >x, 

In model (1.7), the body surface, whatever its shape, may contain sections on which the shear stresses 
are computed by different friction laws. However, analysis of conditions (1.7) using expressions (1.2) 
shows that this possible only when the velocity of the body and the parameters of the medium satisfy 
the inequality 

0<b<~. ;  b = C / g o - 1 ,  C ='~,IB n, L = AIU21BI (1.8) 

If inequality (1.8) is violated on the entire body surface, a uniform friction law must be used to evaluate 
cs,. Thus, ifb < 0, the second condition of (1.7) is always true and cs~ must be evaluated using the constant 
friction model (1.5); but if b > 9~, the first inequality of (1.7) is always true and G~ must be evaluated 
using the Coulomb model (1.6). 

The quantity C depends only on the characteristics of the medium; the coefficient go depends on the 
friction properties of the interacting materials of the medium and body, and the number ~ depends on 
the properties of the medium and the velocity of the body. Estimates of C and go may be obtained by 
analysing their approximate values in real media [4-6, 10]. 

Thus, using expression (1.3) for B1 and taking into account that g/'ts >> I for most media, we deduce 
that C ~ [0.09, to 0.29] in the range of gl% values from 5 to 103. Analogous estimates for C may be 
obtained in other approximations [4, 5, 10]. For the coefficient go one most frequently uses the range 
go ~ [0.01, 0.1] for a metallic impactor moving in a metallic obstruction [10] and the range go e [0.1, 
0.2] for a metallic impactor moving in soil. 

Thus, the non-dimensional quantities C and go may be assumed to satisfy the following constraints, 
which will be used below in our derivation of results 

0.1 <C_<0.3, 0.01 <_go<0.2 (1.9) 
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The use of model (1.2) for any of the ways considered above for evaluating ~ enables us to represent 
the forces F (1.1) and its components as explicit functions of the body shape. This property of the two- 
term local interaction model (1.2) for specific friction laws has been used before [4, 7-9, 11-14] when 
solving a great many problems of body shape optimization. However, for the mixed friction model (1.7) 
a solution of the problem of the body of maximum penetration depth has not been found before. 

Below, based on conclusions reached in [8, 12-14] for optimum shapes within the framework of a 
local interaction model of generalized form, we present a comparative analysis of solutions of the 
problem of the body of minimum drag and the body with maximum penetration depth in the class of 
3D configurations for the two-term model (1.2) and friction models (1.5)-(1.7). 

2. T H R E E - D I M E N S I O N A L  MINIMUM DRAG SHAPES 

Suppose a body is moving in the direction opposite to that of the vector x: x = -u. Let S be entire lateral 
surface of the body and assume that there 

a = ( n . x ) > 0  (2 .1)  

Using expressions (1.2) and (1.4) to evaluate the force F (1.1) and noting that (x" x) = ~/, )' = (1 --ct2) 1/2, 
we can write the drag of the body in the form 

D = ( F . x )  = B , ~ f ( a ) a d S ;  f ( a )  = l + Z a  2+BT(kZa 2 + l ) l a ,  B = BffB I (2.2) 

s 

where k = 0 for model (1.5) and k = t for model (1.6). At a fixed velocity, ~. is constant. The coefficients 
B and k are also constant and independent of r if the stresses c~ (1.2) are evaluated in the constant 
friction model (1.5): 

B = C, k = 0 (2.3)  

or in the Coulomb friction model (1.6): 

B = ~0, k = 1 (2 .4)  

In these cases expression (2.2) for f(a)  may be written as in the form 

~fl  (a) for the constant friction model 

f ( ~ )  = [ f2(~)  for the Coulomb friction model 
(2.5) 

f l (0~)  = 1 + ~,0~ 2 +~IC/O~, f 2 ( ( t )  = (1 + k0t2)( l  +~/I.l,o/IX) 

In the mixed friction model (1.7), B and k depend on a, and if 

a ~ a  k, a~ = (blX) in (2.6) 

then expressions (2.4) are used for B and k andf(a)  = fz(a). If a > ak, expressions (2.3) are taken for 
B and k and f(ot) = fl(et). I f f (a)  is considered as a function of the real variable ct in the interval [0, 1], 
thenf(a)  is a positive, continuous function: fl(ak) = f2(ak) and, taking expressions (2.5) into account, 
we have 

f(o~) = inf(fl(a),  f2(ot)) (2.7) 

Independently of the ways considered above for evaluating o~, model (1.2) is a special case of writing 
the stresses within the framework of the local interaction model. In a local interaction model of 
generalized form it has been proved [12-14] that in the class of 3D configurations, for non-separating 
flow around the body and given base area Sb of the body, minimum drag is obtained for bodies at each 
point of whose surface the following condition holds 

a = a* = const (2.8) 
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where a* is the value of tx at which the functionf(tx) has a minimum in the interval [0, 1]. This value 
is independent of  Sb and is determined by the parameters ~., k and B occurring in expression (2.2) for 

It has been shown [12-14] that for given Se values and constraints imposed on the length and transverse 
dimensions of the body, one can construct an infinite set of bodies satisfying condition (2.8). These bodies 
have been called "absolutely optimal," since they all have the same drag, which is the least possible for 
the given base area. 

A minimum of the function f(~) is sought among its local and boundary extrema. The values of 
a = am for local minima satisfy the conditionsf'(%n) = 0 andf"(c%) > 0. Using expression (2.2) for 
/(cQ, we can rewrite the equationf'(0t) = 0 in the form 

23`tx3), + kB3`ot2(,~/2 _ 2 )  _ B = 0 (2.9) 

A boundary minimum is possible only when ct = 1, since if tx -~ 0, then f(~)  ~ ~ .  As a result, the 
required point a* is such that 

f (o t* )  = inf( f (O~m), f(1)) ,  f (1 )  = 1 +3` (2.10) 

The value o f f ( l )  is the same for models (1.5) and (1.6), and the local minima of the functionf(~) 
must be compared with that value. If f(1) < f ( t~ ) ,  then ct* = 1 and an absolutely optimal body is an 
end plane of given area. 

For friction models (1.5) and (1.6), the solutions of Eq. (2.9) are determined by the parameters B 
and 3.. In the thin-body approximation, when 

2 a "~ 1 (2.11) 

these solutions in model (1.5) depend on the value of one parameter E, E = B/3`: 

am = (El2) m (2.12) 

For model (1.6), the approximate solutions of Eq. (2.9) may also be represented by expression (2.12) 
but, as follows from Cardano's formulae for the roots of cubic equations, that can only be done subject 
to the additional condition 3`j.t2/27 ~ 1. This condition is true under the constraints (1.9) and 3  ̀_< 50; 
in that case, consequently, in both friction models (1.5) and (1.6), expression (2.12) can be used for Ctm 
in the approximation (2.11). 

Note that as B increases the quantities am also increase, but as 3  ̀increases they decrease. It can be 
shown that an increase in ctm implies an increase inf(am). The increase inf(O~m) when ~* = am is bounded 
by f(1), which is reached when B = B* and c~ = O~ m "f(O~*m) -----f(1). Using Eq. (2.9), we can write the 
expressions 

* 1/~1 + k3` B* = 3`/(2,,/1 + k3`), %n = 

Curves 1 and 2 in Fig. 1 are graphs of B* as a function of 3 ,̀ constructed for models (1.5) and (1.6), 
respectively. Note that if 3  ̀> 1, then B* > 0.3, so that under conditions (1.9) B < B*. When B < B* 
we have tx* = tZm < Ct*m < 1/~/2. Using relations (2.1) and (2.8), one can verify that in that case the angle 
between the outward normal to the surface of an absolutely optimal body and the direction of motion 
always exceeds 45 ~ I fB  > B*, then tx* = 1 and the angle in question is 0 ~ 

If B < 0.3 and 3  ̀e [1, 50], formula (2.12) gives a good approximation to the exact solutions of 
Eq. (2.9), and it can be shown that in that case, in friction models (1.5) and (1.6), the drag of a body 
constructed with a = ctm (2.12) will increase compared with that of an absolutely optimal body by less 
than 3%. 

The solutions of Eq. (2.9) we analysed above for models (1.5) and (1.6). In the mixed model (1.7), 
it follows from relations (2.7) and (2.10) that the minimum off(tx) should be sought among the minima 
of functions (2.5), and it depends on ~ ,  C and 3 .̀ 

The domain of/~0 and 3  ̀values that satisfy inequality (1.8), for which friction model (1.7) is used, is 
shown for C = 0.1 in Fig. 2; it lies between the dash-dot curve emanating from the point with coordinates 
(~ ,  Z) = (0.1, O) and the line Po = 0.1. Within that domain in Fig. 2 lies curve 1, representing the relations 
between the parameters ~ and 3  ̀when C = 0.1 for which 

in f ( f l ( a ) )  = inf(f2(a))  (2.13) 
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If the point with coordinates ( ~ ,  L) lies below curve 1, the value of ~t* (2.8) used to construct an 
absolutely optimal body is evaluated in friction model (1.6); otherwise model (1.5) is used. As C increases 
the domain of ~ and ~. values for which a* is evaluated by model (1.6) expands, lying in Fig. 2 to the 
left of curves 2 and 3, which were constructed for C = 0.2 and C = 0.3, respectively. 

Also shown in Fig. 2 is curve 4, constructed for ~ and ~. for which/(tzm) =/(1) .  If the point (tx0, ~,) 
lies outside curve 4, then cz* = Ctm, otherwise tx* = 1. 

The solid curves 1-3 in Fig. 2 were constructed for ~ and ~. values for which condition (2.13) is 
satisfied. In the approximation (2.11), local minima of the functions (2.5) are reached when tx = tXm 
(2.12), and in that case condition (2.13) is true if ~. = ~,k, where 

3 2 
~-k = 27((C/Ix0) ~ -  1) /(2IX 0) (2.14) 

Figure 2 presents ~-k as a function of ~ - the dashed curves 1, 2 and 3, constructed for C = 0.1, 0.2 
and 0.3, respectively. It can be seen that these curves are good approximations to the exact values of 

and 9~, which satisfy condition (2.13) without assuming that the body is thin. 
As a result, the quantities c~* = C~m in approximation (2.11) are found from the conditions 

I a I, if 2L>~, k 
a*  = (2.15) 

[.ot 2, if ~. -< ~'k 

where 

o~ t = (C/(2k)) n/3, o~ 2 = (!10/(2~)) I/3 (2.16) 

The drag of an absolutely optimal body is less than the drag of any body with the same base area. 
For C = 0.2 and Ix0 = 0.15, the solid curves 1, 2 and 3 in Fig. 3 represent the quantities AD, 
A D  = ( D ( a ) / D ( c c * )  - 1) x 100 for ~. = 1, 5 and 50, respectively, showing by how many percent the drag 
D(~*) of an absolutely optimal body in model (1.7) is less than the drag D(~) of cones constructed for 
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different ~ and equivalent to the absolutely optimal body in length and base area. Using relations (2.2), 
one obtains AD = ( A f -  1) • 100, where Af = f(c~)/f(a*), and so curves 1-3 in Fig. 3 may be used to 
investigate the behaviour of the functionf(~) over the interval [0, 1]. Curves 1, 2 and 3 have break points 
/, J and K, respectively, whose abscissae correspond to ~x = cxk where, according to formulae (2.5)-(2.7), 
the graphs of the functions fl  and f2 intersect and the expressions for f(~)  are changed. Curves 4 and 
5 in Fig. 3, for ~ = 1, represent the values of AD a and AD2, respectively, where A D  i = ( J ~ ( 0 ~ ) / f ( o ~ * )  - 1) X 
100, i = 1, 2. It can be shown by analysing the relative positions of curves 1, 4 and 5 how the graphs of 
the functionfl and f2 intersect for ~ = 1. Curve 6 in Fig. 3, for ~ = 50, C = 0.2 and g0 = 0.15, represent 
the values of ADz, and it can be shown that if the friction model (1.6) is used with these parameters, 
the optimal body obtained within the limits of that model will have a drag higher by 5% than that of 
the absolutely optimal body when the mixed friction model is used. 

Thus, within the limits of the two-term local interaction model (1.2), we have carried out a comparative 
analysis of the solutions of the problem of a 3D shape of minimum drag provided by friction models 
(1.5)-(1.7). We have shown that, for a given base area of the body, in the mixed friction model (1.7), 
as in models (1.5) and (1.6), the optimum shape is made up of pieces of surfaces satisfying condition 
(2.8), in which or* is found in terms of the parameters g0, C and ~.. Unlike the optimum shape of solid 
of revolution [9], which may contain parts in which ~ is evaluated using different friction laws, the values 
of c~ on a surface of optimal 3D configuration are evaluated using uniform friction law (1.5) or (1.6). 
In the thin-body approximation (2.11), the relation between cx* = am and the characteristics of the 
medium for friction models (1.5) and (1.6) is given by formula (2.12), while for the mixed friction model 
(1.7) it is given by formulae (2.14)-(2.16); for ~ ~ [1, 50] and conditions (1.9) these formulae yield good 
approximations to the exact c~* values. 

3. T H R E E - D I M E N S I O N A L  S H A P E S  OF M A X I M U M  
P E N E T R A T I O N  D E P T H  

Using expression (2.2) for the drag D of the body, we can write the equation of motion of a body mass 
m in the form 

m d U I d t  = - D ,  D = A1U2DI + BID2 (3.1) 

where 

o , =  s.i , , , , , , -<, , ,  , =  ,,,<<, = 

Taking into consideration that d H  = Udt, where H is the length of the body's trajectory, and also 
that 

dUId t  = 1/2dUZldH 
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we can rewrite Eq. (3.1) for the variables H and ~., obtaining the following expression for the complete 
length H0 of the body's trajectory 

Xo Ai Uo z 
H0 = ~Ai ! d~ k0 = 

~,D t + D 2' B l 
(3.3) 

where U0 is the initial velocity of the body. 
If the functionals D 1 and D 2 are independent of ~., then 

m ( O : )  
H 0 = 2A-]-DI In 1 + k 0 (3.4) 

For dense media, H0 is the penetration depth of the body. Formula (3.4) may be used if D1 and D 2 
are constant and the parameters k and B occurring in (3.2) do not depend on U. This is true for friction 
models (1.5) and (1.6), with k and B as in (2.3) or (2.4). 

It has been proved [8] that in the class of 3D shapes of given mass m and base area Sb, the maximum 
penetration depth H0 (3.4) is attained by bodies in which, as in the case of minimum drag bodies, 
condition (2.8) holds at each point of the surface. 

If at = const 

H o = M o h ( a ) ,  M o - 2SbAl  - const  

In(1 + q)  ~ 2a  + k B  7 
h(o0 = q(1 + B T l a ) "  q = A'~ - ~ - f f 7  

(3.5) 

where the expression for h(a)  has been derived from formulae (3.2) and (3.4). 
For shapes of maximum penetration depth, at* (2.8) is the argument at at which the function h(a)  

reaches a maximum in the interval [0, 1]. The value of at* is independent o fm and Sb, being determined 
by the parameters L0, k and B. 

The maximum of the function h(at) is sought among its local and boundary extrema. The values of 
at, n at which h(at) attains a local maximum satisfy the h ' ( t~)  = 0 and h"(am)  < 0. A boundary maximum 
of the function h(t~) is only possible at ot = 1, since if a ~ 0, then h(t~) ~ 0. Hence the required a* is 
such that 

h(at*)  = sup(h(o~,,),h(1)), h(1) = In(1 +~,0)/k0 (3.6) 

The quantity h(1) is the same for models (1.5) and (1.6), and it must be compared with the local 
maxima of h(at). If h(1) > h(ctm), then at* = 1 and the body of  maximum penetration depth is an end 
plane of given area. 

The equation h'(at) = 0 may be written as 

2~,oOt3T+kB~.oO~2(T2-o t2) -QB = 0, Q = q 2 / ( ( q +  1)ln(q+ 1 ) - q )  (3.7) 

Unlike Eq. (2.9), which was written for the extrema off (a) ,  Eq. (3.7) involves a function Q = Q(q) .  
If q < 1, we have an approximation for Q 

Q = 2 / ( 1 - q / 3 )  

but if q/3 ~ 1, then Q = 2. Since q < ~0ct 2, this is true when 

2 
a "~3/k 0 (3.8) 

If condition (3.8) holds and the thin-body approximation (2.11) is used for both friction models (1.5) 
and (1.6), then the solution of Eq. (3.7), like that of Eq. (2.9), is determined by the value of the parameter 
E; it is 

a m = E 1~, E = B/Z o (3.9) 
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For model (1.6), it is legitimate to write the solution in the form (3.9) if )~0~t~/54 ~ 1, which is true 
under the constraints (1.9) and )~0 < 50. 

For fixed ~ ,  ifB --) 0, then ~n --) 0, and it can be shown that h(C~m) --4 1. Since h(1) = ln(1 + ~0)/~0 < 1, 
it follows that there is always a B* such that, for B < B*, we have h(O~m) > h(1), and consequently, 
for these B values, o~* = c~ m . At the same time, if ~ is fixed and B is increased, then c~ will increase 
and h(Otm) will decrease. The increase in c~m is bounded by the value of ~* obtained for B = B*: 
h(~*)  = h(1). It can be shown that, just as for minimum drag bodies, c~* < 1/,f2. Consequently, for 
B < B* we have c~* = am < 1/'12, and the angle between the outward normal to the surface of the 
optimum body and the direction of motion will always exceed 45 ~ For B > B* we have or* = 1, and the 
angle is 0 ~ 

It should be mentioned that an abrupt change in the type of solution when the friction parameter 
reaches a certain value has been observed in the numerical solution of the problem of a slid of revolution 
with maximum penetration depth within the limits of model (1.6) [7]. This result, however, was perceived 
as undesirable [7] and interpreted as a transition to a minimum of the depth functional. It was shown 
above that the change in the type of solution when B _> B* is natural, and it means that the maximum 
of the depth functional, previously a local extremum, has become a boundary extremum. 

Curves 3 and 4 in Fig. 1 show B* as a function of ~ for friction models (1.5) and (1.6), respectively. 
It can be shown that when ~ > 2 and constraints (1.9) hold, then B* > B and consequently in that 
case cz* = ~m. 

The solution (3.9) was obtained in the approximation (2.11), subject to condition (3.8), which for 
large ~0 is not always rigorously true for C~,n. However, it can be shown that for both friction models, 
if X0 ~ [2, 50] and constraints (1.9) hold, then formula (3.9) gives a good approximation to the exact 
values of am and the penetration depth of bodies constructed with ~ = am (3.9) is less than the maximum 
by at most 0.5%. 

The results of a comparison of the penetration depth of bodies of minimum drag with the maximum 
penetration depth found for the same parameters as the minimum drag have shown that for Z0 ~ [2, 
50], if constraints (1.9) holds, the penetration depth of bodies constructed with ~ = am (2.12) is less 
than the maximum by at most 3%. This conclusion is important for practical application of the results 
obtained, since it can be shown by an analysis of formulae (2.12) and (3.9) that an error of even a factor 
of two in the value of the parameter B is admissible if the relation ~ = am (3.9) is used in the design 
of bodies. Then, if X0 ~ [2, 50] and constraints (1.9) hold, the penetration depth of the bodies thus 
designed will differ only slightly from the maximum. 

The solut/ons of the problem of a body of maximum penetration depth were analysed above for friction 
models (1.5) and (1.6), with the penetration depth H 0 (3.3) expressed as a functional (3.4). In the case 
of the mixed friction model (1.7), there is no formula analogous to (3.4) for H0, since in that case the 
parameters k and B in formulae (3.2) for D1 and D2 depend on )~ and ~. For a body of arbitrary shape, 
the values of k and B may differ in different parts of the body, and even in one part of the body they 
may change as )~ is reduced from X0 to zero. 

However, this does not exclude the possibility of using methods of the calculus of variations to 
maximize H 0 (3.3). At known values of m, Sb and ~0, the penetration depth H 0 (3.3) is uniquely defined 
by the body shape. Consequently, in that case too H 0 may be considered as a functional, dependent on 
the body area S. 

Suppose the surface S is defined in a cylindrical system of coordinates (x, r, 0) by the equation 
x = z(r, 0), where Z is a single-valued function of the points of the body base, whose contour is described 
by the equation r = R(0). Then t~/S = d S  b = rdrdO, and formulae (3.2) may be rewritten in the form 

2~ R2(O) 21t 
1 D i = ~ d O  ~ gi(t~)dr 2, i=  1,2; ~R2(0)d0 = 2S b (3.10) 

0 0 0 

Note that the functions t~(r, 0) and R(0) define the surface S and are independent of one another. 
The problem of constructing the shape of a 3D body of maximum penetration depth may be formulated 
as follows: among all piecewise-smooth functions (z(r, 0) and R(0) that satisfy condition (2.1) and the 
last condition of (3.10), it is required to find those that make the functional H0 (3.3) a maximum. 

The Lagrange function for the functional (3.3) may be written in the form 

2~ 

L = no(tX, R) + G0 ~ R2(0) d0 (3.11) 
o 
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where ~ is a constant factor. Euler's equations for the functions a(r, 0) and R(0) of the extremal surface 
are found from the condition ~SL = 0, which, in view of formulae (3.3) and (3.11), may be written in 
the form 

m ~-~-SDl + ~iD2 2x 
- !i~,Ol +D2)2ark+~oI~R2dO = 0 2AI o 

where, in accordance with relations (3.2) and (3.10) 

2~ R2(O) 21t 

1 f (g i ( t z f )6R2)dO,  ~Di= ~fdO f (g;(oOStx)dr2+~ 
0 0 0 

2 2 
o~/ = ct(R(0),0);  gl(tz ) = 2(x+kB" Y -tz g2(ot ) = B 

' 2 

i = I , 2  

(3.12) 

(3.13) 

Since the quantities ~0, D1, De and ~0 are the same on the entire surface of the body, while &t and 
8R 2 are independent, it can be shown, using (3.13), that Eq. (3.12) will only hold when the function 
c~(r, 0) satisfies the conditions 

• 0  I t 
f Xg~ ((z__)__+ g2 (ct) ar ~ 
Jo (~'D1 + D2 )2 = 0 (3.14) 

i~ 'g l (0~/ )  + g2(0t / )d~ _ 4A__~1~0 = 0 (3.15) 
(~LD l + D2) 2 m 

Equation (3.14) must hold at each point of the extremal surface of the body, and it involves no 
dependence of t~ on r and 0. The required function ct is determined by the parameters ~0, kt0 and C, 
which are the same on the entire body surface, and consequently condition (2.8) will hold on the extremal 
surface. Equation (3.15) relates the values of t~ on the contour of the body base with the Lagrange 
multiplier ~0. The solution of Eq. (3.15) has no effect on the function o~, and this means that the value 
of ~* in condition (2.8) is independent of the given value of Sb. 

The value of t~* is such that the surface constructed for ~ = ~* makes the functional H0 (3.3) a 
maximum. The extremum of the functional is sought with ct = const, and therefore 14o may be regarded 
as a function of the real variables c~, defined in the interval [0, 1]:/4o = M0h(o0, where 

h(ot) --- (hl((~) + h2((~))/(~,o0t 2) 

ln~,00t 2 + C'ylot + 1 ln(~.10t 2 + l ) (3.16) 
hi(or)  = h2(O0 = ~'1 = ~'1 ( t ~ )  

~'1 01"2 "F C'~/O[ + 1" 1 + l~o7la " 

If b _< 0, where b is defined by formula (1.8), then, independently of a, we have ~'1 = 0,  h2((~) = 0, 
corresponding to the case of the motion of a body within the limits of model (1.5). In the mixed friction 
model (1.7), b will satisfy condition (1.8), and if b/o~ 2 < ~0, then ~.1 = b/tz2, otherwise ~1 = ~0. In the 
latter case ht(ct) = 0, and the friction is calculated throughout according to model (1.6). 

The maximum of H0 is sought among the local and boundary extrema of the function h(ct). The values 
of (~ -- Ctm at which h(~) attains a local a maximum satisfy the conditions h'(ct~) = 0, h"(Ctm) < 0, and 
they are found from Eq. (3.14). A boundary maximum of the function h(o 0 is only possible at (~ = 1. 
We have h( l )  = ln(1 + ~o)/~, and the local maxima of h((~) must be compared with that quantity. If 
h(1) > h((~) ,  then c~* -- 1, and the body of maximum penetration depth is an end plane of given area. 
Consequently, as in the determination of the maximum of h((~) in models (1.5) and (1.6), the quantity 
a* is found from condition (3.6), but in the mixed friction model h((~) is defined by formula (3.16). 
Using the last two relations of (3.13), it can be shown that in the case hl(O 0 = 0 or h2((~ ) = 0, 
corresponding to motion of the body within the limits of models (1.5) or (1.6), Eq. (3.14) takes the form 
of (3.7). 
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Solutions of Eq. (3.14) found for C = 0.2 are shown as functions of ~ in Fig. 4 by solid curves for 
different ~ values. Solutions of Eq. (3.17) found for the same values of C, ~ and ~ for models (1.5) 
and (1.6) are shown in Fig. 4 by dot-dash and dashed curves, respectively. It can be seen that for small 
values of ~t0 the values of C~m obtained from Eq. (3.14) agree with the solutions of Eq. (3.7) found for 
friction model (1.6), while for ~ > C these values agree with the solutions of Eq. (3.7) obtained for 
friction model (1.5). For fixed C and ~ ,  there is a domain of values of ~ in which the solutions of 
Eq. (3.14) differ from those of Eq. (3.7). However, one can see that in that domain the solutions of 
Eq. (3.14) can be approximated by the values of a m found from Eq. (3.7) for friction model (1.5). It 
can be shown that for these ~ ,  if L0 ~ [2, 50] and constraints (1.9) hold, the penetration depth for bodies 
with a = am, where ~m satisfies Eq. (3.7), will differ from the maximum by less than 2%. 

In the mixed friction model (1.7), the Coulomb model (1.6) for the notation of o~ is used when 
condition (2.6) is satisfied, where a~ is evaluated at ~. = ~ .  As a result, if the values of am found from 
Eq. (3.14) satisfy condition (2.6) for E = ~ ,  then the friction on the body surface is evaluated over the 
entire section of the path using model (1.6). In the approximation (2.11), the values of a,n are determined 
by (3.9), and in that case E = ~t0/~. Using formula (3.9), one can find the limiting values of C, Lo and 
~t0, at which ~ = ak (2.6). Thus, given C and ~ ,  the limiting values of ~ = kk are found from the 
condition 

~'k = (C/I.to - 1)3/~ (3.17) 

and for C = 0.2 they are represented as a function of ~t0 by curve 5 in Fig. 2. 
As a result, within the limits of the mixed model (1.7) for ~ < kk, a body of maximum penetration 

depth is constructed for ~ = ~ ,  where am is defined by formula (3.9) with E = ja~/~. The limiting 
values of a = ak are also found using the values of C and ~ :  ~ = ~to/(C/I.to - 1), and for C= 0.2 they 
are represented by the thickened curve in Fig. 4. This curve, constructed in the approximation (2.11), 
defines the relation between the limiting values of ~ and am such that ~ = a~ for ~ = ~k. If ~0 > ~'k, 
then a m > ak, and model (1.6) is more inapplicable. In that case, the s of a,n in approximation (2.11) 
are approximated by formula (3.9) with E = C/Lo.  Consequently, in the mixed friction model (1.7) for 
bodies with maximum penetration depth, as for bodies of minimal drag, approximation (2.15) may be 
used for a*, but in that case kk will be defined by formula (3.17) and 

al  = (C/~.0) m, a z = (lx0/2~0) m (3.18) 

This approximation, found subject to condition (2.11) and in the framework of the mixed model, is 
a good approximation of a m for the local extrema of the function h(a).  However, for every ~0 a B* 
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exists such that, i fB > B*, the c~* = 1. The values of B* for friction models (1.5) and (1.6) are given 
as functions of L0 in Fig. 1, and it can be seen that if ~ > 2 and constraints (1.9) holds, then B < B* 
for these models. Consequently, for such L0, C and t10, we have c~* = ~ in friction models (1.5)-(1.7); 
the approximation (3.9) may be used if models (1.5) and (1.6) are considered, and (2.15) if the mixed 
model (1.7) is considered, with values of ~.k, cq and a2 taken from formulae (3.17) and (3.18). 

The advantages of optimum bodies for penetration depth, compared with other bodies of the same 
mass and base area, increase together with ~ .  This may be seen by analysing the behaviour of the curves 
shown in Fig. 5 and representing, for C = 0.2 and p~ = 0.15, the quotient AH = Ho(oQ/Ho(a*) as a 
function of cc for different values of )~. The quantity H0(a) may be considered in this case as the 
penetration of cones, constructed for different c~, of the same mass and base area as an optimum body. 
The solid curves in Fig. 5 represent AH for the mixed friction model; the dot-dash and dashed curves 
represent AH for friction models (1.5) and (1.6), respectively. 

Analysis of the behaviour of the curves in Fig. 5 shows that, for ~o = 1 and ~ > 0.3, the penetration 
depths of cones differ from the maximum by less than 10%. For ~ = 50 and a > 0.3, the differences 
already exceed 20%; for example, the penetration depth of an optimum body exceeds that of a cylinder 
of the same mass and base area, with a = 1 on its leading face, by a factor of almost 5. 

Our result - the weak dependence of the penetration depth on the body shape when ~0 - 1 - agrees 
with the conclusion drawn in [16] from an analysis of experimental data on the penetration depth of 
ogival bodies in concrete. It was shown in [16] that up to a velocity U0 = 460 m/s the penetration depth 
of the bodies is well approximated by formulae obtained on the assumption that the dynamic component 
in formula (1.2) for gn (1.2) is small compared with the strength component. Note that the velocity 
U0 = 460 m/s for concrete corresponds to ~ = 2. 

Analysis of a large body of experimental and theoretical data relating to the penetration depth of 
bodies of various geometries in such media as soil, concrete, and metal implies that, up to penetration 
velocities U0 corresponding to ~ - 5, there is little difference between the depths to which different 
bodies penetrate [10]. It has been conjectured that at such velocities the problem of optimizing the body 
shape is not of the essence, since under those conditions the differences between penetration depths 
of bodies of different geometries amount to at most 10-15 % [10]. One can agree with this last conclusion 
only provided the bodies considered vary over a limited range of relative thicknesses. For ~ < 5, the 
function H0(ct) does not have a sharply expressed maximum; in that case, therefore, it is quite possible 
that the penetration depths of different bodies will differ only slightly. Outside that range of thicknesses, 
however, the differences may increase. Analysis of the behaviour of the curves constructed in Fig. 5 
for k0 = 5 shows that when ct > 0.4, an increase in the relative thickness of a cone leads to a loss of 
penetration depth in the optimal body; for a body with a = 1 this loss may reach as much as 60%. 
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Thus, within the framework of the two-term local interaction model (1.2), using friction models 
(1.5)-(1.7), we have compared the solutions of the problem of the shape of a body with maximum 
penetration depth. It has been shown that, for a given mass and base area of the body, in all the friction 
models, the optimum shape is constructed subject to the condition (2.8), where a* is determined by 
the parameters )~0, C and g0. If ~ ___ 2, then or* = am and the value of a* is approximated by formula 
(3.9) if the friction model considered is (1.5) or (1.6), or by formula (2.15) with values of )~0, ~1 and a2 
taken from formulae (3.17) and (3.18) if the mixed model (1.7) is considered. If ~0 s [2, 50] and 
constraints (1.9) hold, these approximations enable bodies to be constructed whose penetration depth 
deviates from the maximum by less than 2%. 

In conclusion, it should be mentioned that the values )~0 e [2, 50] for which approximations and 
estimates have been obtained in this paper include the most interesting range of initial velocities of 
bodies moving in different media, from a practical point of view. As the velocity ~ increases, the 
advantages of optimum bodies are enhanced as regards lower drag and deeper penetration compared 
with other bodies. However, there is always a value )~* such that when ~ > 2~* the penetrating body is 
deformed. Optimization problems for bodies are solved on the assumption that the shape of the body 
is not distorted during motion, and the solutions of these problems are meaningful only when ~ < 9~*. 
The actual value of),* depends on the properties of the medium and the strength characteristics of the 
material of the impactor. Analysis of experimental data for a steel projectile penetrating concrete [15] 
and aluminium [17] shows that in these media deformation of a steel projectile begins at a velocity 
U0 = U*, U* = 1500 m/s, which corresponds to ~.* = 20 for concrete and 3.* - 5 for aluminium. No similar 
experiments have been published for soil, but we may assume that, since the friction forces in soil are 
higher than in metal, the velocity U* should be lower. In low and medium strength soils, a value of 
L0 = 50 corresponds to U0 -- 700 to 1000 m/s and these velocities may be considered to be the limiting 
ones for soils as long as the projectile has not yet been deformed. 
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